Hypergraphs with high projective dimension and 1-dimensional hypergraphs
نویسندگان
چکیده
(Dual) hypergraphs have been used by Kimura, Rinaldo and Terai to characterize squarefree monomial ideals J with pd(R/J) ≤ μ(J) − 1, i.e. whose projective dimension equals the minimal number of generators of J minus 1. In this paper we prove sufficient and necessary combinatorial conditions for pd(R/J) ≤ μ(J)−2. The second main result is an effective explicit procedure to compute the projective dimension of a large class of 1-dimensional hypergraphsH (the ones in which every connected component contains at most one cycle). An algorithm to compute the projective dimension is also provided. Applications of these results are given; they include, for instance, computing the projective dimension of monomial ideals whose associated hypergraph has a spanning Ferrers graph.
منابع مشابه
Sparse hypergraphs with applications in combinatorial rigidity
A hypergraph H = (V,E) is called (1, k)-sparse, for some integer k, if each subset X ⊆ V with |X| ≥ k spans at most |X| − k hyperedges. If we also have |E| = |V | − k then H is (1, k)-tight. Hypergraphs of this kind occur in several problems of combinatorial rigidity, where the goal is to analyse the generic rigidity properties of point sets equipped with geometric constraints involving subsets...
متن کاملno-homomorphism conditions for hypergraphs
In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.
متن کاملExchangeable random hypergraphs
A hypergraph is a generalization of a graph in which an edge may contain more than two vertices. Hereditary hypergraphs are particularly important because they arise in mathematics as the class of monotone subsets, in statistics as the class of factorial models, in topology as simplicial complexes and in algebra as the free distributive lattice. An exchangeable random hypergraph consists of a p...
متن کاملOn the Chromatic Thresholds of Hypergraphs
Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c (|V (H)| r−1 ) has bounded chromatic number. This parameter has a long history for graphs (r = 2), and in this paper we begin its systematic study for hypergraphs. Luczak and Thomassé recently pro...
متن کاملThe metric dimension of circulant graphs and Cayley hypergraphs
Let G = (V,E) be a connected graph (or hypergraph) and let d(x, y) denote the distance between vertices x, y ∈ V (G). A subset W ⊆ V (G) is called a resolving set for G if for every pair of distinct vertices x, y ∈ V (G), there is w ∈ W such that d(x,w) 6= d(y, w). The minimum cardinality of a resolving set for G is called the metric dimension of G, denoted by β(G). In this paper we determine t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 27 شماره
صفحات -
تاریخ انتشار 2017